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Introduction 

 
The rapid growth of battery-related innovations has led to an influx of patent filings, making efficient 

classification of these documents crucial for research and development. Umicore Belgium, a leader in 

sustainable materials technology, requires an automated solution to manage and analyze patent data effectively. 

This project focuses on enhancing patent classification by transitioning from a traditional Bag of Words (BoW) 

approach to advanced Large Language Models (LLMs) like PatentBERT and BatteryBert, which better 

capture the semantic meaning of patent and battery related texts. 

 

Conducted during my internship from September 2024 to December 2024, this research aims to address 

limitations in the current system by improving accuracy, in processing complex, domain-specific patent 

language. This work is essential to support strategic decision-making and innovation tracking within Umicore’s 

battery materials division. 

 

These experiments showcases a highlight of the gradual processes taken to refine the finetuning of the Bert 

model, each of these experiments were logged in MLFlow for analysis which introduced insights on steps to 

take going forward, furthermore, it aids the scientists and researchers in reproducing similar experiments with 

an end result in mind. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Doc HN PT 01 

Basic Training Loop: 

• Model: PatentBERT 

• Loss Function: Cross-Entropy Loss 

• Optimizer: AdamW 

• Learning Rate: 0.001 

• Early Stopping: Triggered on validation loss 

• Layers Trained: Only the classifier layer 

• Batch Size: 8 

• Epochs Completed: 4 

Results: 

• Test Accuracy: 62% 

• Test F1-Score: 64% 

• Test Precision: 82% 

• Test Recall: 62% 

• PR Curve AUC: 55%

 

 

General: 

Dataset Details: High Nickel Data 

• Total Training Samples: 3885 

• Class Distribution: 

o Class 0 (Potentially Not Relevant): 2881 samples 

o Class 1 (Potentially Relevant): 1004 samples 

• Random Weighted Sampling Utilized 



 

 
 

 

Doc HN PT 02 

Basic Training Loop: 

• Model: PatentBERT 

• Loss Function: Cross-Entropy Loss 

• Optimizer: AdamW 

• Learning Rate: 0.001 

 

Analysis: 

• From the confusion matrix: 

o 97% of relevant patents (Class 1) were correctly predicted (True Positives). 

o 50% of irrelevant patents (Class 0) were correctly predicted (True Negatives). 

o This indicates the model is biased towards predicting Class 1, making it more effective 

at identifying relevant patents. 

Challenges Identified: 

• Significant class imbalance in training data (Class 0 dominates). 

• Training only the classifier layer limited the model's ability to generalize. 

• Low PR curve AUC indicates difficulty maintaining high precision across different recall 

levels. 

Future Steps: 

1. Fine-Tune Full Model: Gradually unfreeze BERT layers to incorporate semantic 

embeddings. 

2. Try Other Architectures: Experiment with models like BatteryBert. 

3. Optimize Hyperparameters: Adjust batch size, learning rate 



• Early Stopping: Triggered on validation loss 

• Layers Trained: Classifier and Pooler Layer 

• Batch Size: 8 

• Epochs Completed: 8 

Results: 

• Test Accuracy: 75% 

• Test F1-Score: 76% 

• Test Precision: 83% 

• Test Recall: 75% 

• PR Curve AUC: 63% 

Analysis: 

• Confusion Matrix Observations: 

o 90% of relevant patents (Class 1) were correctly predicted (True Positives). 

o 69% of irrelevant patents (Class 0) were correctly predicted (True Negatives). 

• Performance Improvements: 

o Compared to Doc HN PT 01, the model's ability to correctly identify irrelevant patents 

(Class 0) improved by 19%, demonstrating better handling of class imbalance. 

o The PR Curve AUC increased to 63%, showing improved precision across a 

wider range of recall values, which indicates more balanced performance. 

• Class Bias: 

o Although the model performs better overall, it still exhibits a slight bias 

toward predicting Class 1, making it more effective at identifying relevant patents than 

irrelevant ones. 

Challenges Identified: 

• Significant class imbalance in training data (Class 0 dominates). 

• Training only the classifier layer limited the model's ability to generalize. 



 
 
 
 

 
• Low PR curve AUC indicates difficulty maintaining high precision across different recall 

levels. 

Key Differences from Doc HN PT 01: 

1. Layers Trained: Training both the Classifier Layer and the Pooler Layer allowed the model to 

utilize richer semantic embeddings from the final BERT layers, resulting in a significant 

performance boost. 

2. Increase in Class 0 Recall: The model demonstrated a notable improvement in its ability to 

identify irrelevant patents, balancing the precision-recall trade-off better than in Doc HN PT 

01. 

3. Higher Metrics Across the Board: 

o Accuracy increased by 13% (from 62% to 75%). 

o F1-Score improved by 12% (from 64% to 76%). 

o Precision for Class 1 increased slightly from 82% to 83%. 

o Recall for Class 1 improved from 62% to 75%. 

 

 

Future Steps: 

1. Unfreeze Additional Layers: Gradually unfreeze the BERT encoder layers to allow fine-

tuning of deeper semantic representations. 

2. Try Other Architectures: Experiment with models like BatteryBert. 

3. Optimize Hyperparameters: Adjust batch size, learning rate 

 
 
 
 
 
 

 

Doc HN PT 03 

Basic Training Loop: 

• Model: PatentBERT 

• Loss Function: Cross-Entropy Loss 



• Optimizer: AdamW 

• Learning Rate: 0.001 

• Early Stopping: Triggered on validation loss 

• Layers Trained: Classifier , Pooler Layer, All layers from 7th epoch 

• Batch Size: 8 

• Epochs Completed: 10 

Results: 

• Test Accuracy: 73% 

• Test F1-Score: 62% 

• Test Precision: 53% 

• Test Recall: 73% 

• PR Curve AUC: 63% 

Analysis: 

• Confusion Matrix Observations: 

o Class 0 (Irrelevant Patents): 100% were correctly predicted (True Negatives). 

o Class 1 (Relevant Patents): 0% were correctly predicted (True Positives). 

o The model classified all patents as not relevant, regardless of their true label. This 

resulted in: 

▪ High Recall for Class 0 due to overemphasis on predicting irrelevance. 

▪ No Recall for Class 1, as no patents were classified as relevant. 

• Behavior After Unfreezing All Layers: 

o Unfreezing all layers from the 7th epoch led to significant degradation in 

performance: 

▪ Training and Validation Accuracy dropped from 76% to around 50%. 

▪ Training and Validation Loss increased dramatically from 50% to 

around 80%. 



 

 

 

 

 

o This suggests overfitting or catastrophic forgetting, where fine-tuning the lower 

BERT layers disrupted the pre-trained embeddings, resulting in a collapse of 

model performance. 

Key Observations: 

1. Collapse in Class 1 Predictions: 

o Despite high accuracy for irrelevant patents, the model completely failed to predict 

relevant ones, rendering it ineffective for use cases requiring recall or balance between 

the two classes. 

2. Impact of Layer Unfreezing: 

o Unfreezing all layers without proper learning rate adjustments likely caused the model 

to overfit the training data while failing to generalize on the validation or test sets. 

 

 

Future Steps: 

1. Refine Fine-Tuning Strategy: 

o Gradually unfreeze deeper layers instead of all at once, starting with a few encoder 

layers and progressing only if performance improves. 

o Use smaller learning rates for pre-trained layers (e.g., differential learning rates) to 

prevent destabilization of pre-trained embeddings. 

2. Adjust Training Parameters: 

o Introduce warmup steps in the learning rate schedule to stabilize training during 

fine-tuning. 

o Regularize the model using techniques like data, augmentation ,dropout and weight 

decay to prevent overfitting. 

 

 

Conclusion: 

This experiment highlights the risks of unfreezing all layers without careful optimization and showcases 

the delicate balance required when fine-tuning pre-trained models. While high accuracy for Class 0 

might seem encouraging, the inability to predict Class 1 renders the model ineffective for real-world 

applications. Future iterations should focus on controlled 



 

 

 

 

 

fine-tuning, addressing class imbalance, and improving generalization to achieve more reliable results. 

 

 

Doc HN PT 04 

Basic Training Loop: 

• Model: PatentBERT 

• Loss Function: Cross-Entropy Loss 

• Optimizer: AdamW 

• Learning Rate: 

o Classifier and Pooler Layers: 0.001 

o Backbone Layers: Adaptive, between 0.0001 and 0.00001 (adjusted using a custom 

LR reducer). 

• Early Stopping: Triggered on validation loss 

• Layers Trained: 

o Classifier and Pooler layers initially 

o A percentage of the backbone layers were unfrozen iteratively when 

validation loss became stable (starting with 25%). 

• Batch Size: 8 

• Epochs Completed: 8 

Results: 

• Test Accuracy: 73% 

• Test F1-Score: 62% 

• Test Precision: 53% 

• Test Recall: 73% 

• PR Curve AUC: 36% 

Analysis: 

• Confusion Matrix Observations: 



• Class 0 (Irrelevant Patents): 100% were correctly predicted (True Negatives). 

• Class 1 (Relevant Patents): 0% were correctly predicted (True Positives). 

• The model classified all patents as not relevant, regardless of their true label. This resulted in: 

o High Recall for Class 0 due to overemphasis on predicting irrelevance. 

o No Recall for Class 1, as no patents were classified as relevant. 

Behavior After Layer Unfreezing: 

• Starting from the 4th epoch, 25% of the frozen backbone layers were unfrozen 

iteratively whenever validation loss plateaued. 

• Observations: 

o Training and Validation Accuracy dropped significantly (from 70% to 50%). 

o Training and Validation Loss increased (from 50% to 70%). 

• This suggests that: 

o Fine-tuning a whole 25% of the back-bone destabilized pre-trained 

embeddings. 

o The model could not balance learning new representations while retaining prior 

knowledge. 

 

 

Custom Functions Used: 

• Learning Rate Reducer (custom_lr_reducer): 

o Dynamically reduced the learning rate for the backbone layers when 

validation loss plateaued. 

o Despite this, the model still failed to generalize for Class 1, indicating that the learning 

rate reduction alone was insufficient to stabilize training. 

• Layer Unfreezing Function (unfreeze_layers): 

o In this case, 25% of the backbone layers unfrozen iteratively. 

o Likely led to gradient instability, as deeper layers may require even smaller learning 

rates during fine-tuning. 



 

 

 

 

 

 

Challenges Identified: 

1. Imbalanced Class Predictions: 

o The model consistently defaulted to predicting all samples as Class 0, making 

it ineffective for detecting relevant patents (Class 1). 

2. Impact of Layer Unfreezing: 

o While the unfreezing strategy attempted to iteratively train the backbone, it likely 

introduced gradient instability due to high learning rates for deeper layers. 

3. Low PR Curve AUC: 

o A PR Curve AUC of 36% shows poor precision-recall trade-offs, further 

confirming the model's inability to generalize well across classes. 

 

 

Key Observations: 

• While the custom unfreezing and learning rate adjustment sounded innovative, their 

implementation failed to improve performance. 

• Performance degradation suggests that the backbone layer updates were too 

aggressive. 

Future Steps: 

• Backbone Layers: Very low learning rates (e.g., 0.00001–0.000001). 

• Fine-Tune Fewer Layers: 

o Instead of unfreezing 25%, start with unfreezing just 1–2 encoder layers 

closest to the classifier. 

 

 

Conclusion 

The initial implementation of PatentBERT revealed significant limitations in the model's ability to 

generalize, particularly for identifying relevant patents (Class 1). While irrelevant patents (Class 0) were 

classified with 100% accuracy, the complete failure to identify any relevant patents resulted in poor 

F1-score, precision, and recall for Class 1. The strategy of progressively unfreezing layers by 25% when 

validation loss plateaued led to instability, as 



 

 

 

 

 

observed in the sharp drop in training and validation performance. This suggests that unfreezing large 

portions of the backbone layers without proper adjustments to learning rates can disrupt model 

convergence. 

 

 

 

 

 

Doc HN PT 04.1 

Basic Training Loop: 

• Model: PatentBERT 

• Loss Function: Cross-Entropy Loss 

• Optimizer: AdamW 

• Learning Rate: 

o Classifier and Pooler Layers: 0.001 

o Backbone Layers: Adaptive (between 0.0001 and 0.00001) using a custom LR 

reducer. 

• Early Stopping: Triggered based on validation loss. 

• Layers Trained: 

o Initially, Classifier and Pooler Layers were trained. 

o 2.5% of the Backbone Layers were unfrozen iteratively when validation loss 

plateaued. 

• Batch Size: 8 

• Epochs Completed: 11 

 

 

Results: 

• Test Accuracy: 79% 

• Test F1-Score: 80% 

• Test Precision: 84% 



• Test Recall: 79% 

• PR Curve AUC: 70% 

 

 

Analysis: 

1. Confusion Matrix Observations: 

o Class 0 (Irrelevant Patents): 

▪ 77% correctly predicted (True Negatives). 

o Class 1 (Relevant Patents): 

▪ 85% correctly predicted (True Positives). 

o Misclassifications: 

▪ 23% of patents incorrectly classified as potentially relevant 

▪ 15% of patents incorrectly classified as potentially not relevant 

2. Behavior After Layer Unfreezing: 

o Starting from the 4th epoch, 2.5% of frozen backbone layers were unfrozen 

iteratively whenever validation loss plateaued. 

o Observations: 

▪ Training and Validation Accuracy: 

▪ Increased from 74% (train) and 71% (val) to 86% (train) and 82% 

(val) by the 6th epoch. 

▪ Training accuracy stabilized at 89%, while validation accuracy 

remained between 79% and 82%. 

▪ Training and Validation Loss: 

▪ Decreased from 53% (train) and 55% (val) to 33.5% (train) and 44% 

(val) in the 6th epoch. 

▪ Training loss further decreased to 19% by the final epoch. 

▪ Validation loss increased temporarily to 57% (7th epoch) 

before stabilizing at 46% (10th epoch). 



3. Key Observations: 

o Model performance showed significant improvement with finer granularity of layer 

unfreezing (2.5%). 

o Despite achieving a better balance in predicting both classes, the PR Curve AUC 

(70%) and misclassifications indicate potential for further tuning. 

o Slight instability in validation loss suggests that the model may still require finer 

learning rate adjustments or additional regularization e.g Data augmentation. 

 

 

Custom Functions Used: 

1. Learning Rate Reducer (custom_lr_reducer): 

o Dynamically adjusted the learning rate for the backbone layers when 

validation loss plateaued. 

o Helped stabilize training but could not fully prevent validation loss 

fluctuations. 

2. Layer Unfreezing Function (unfreeze_layers): 

o Gradually unfroze 2.5% of the backbone layers at a time, reducing the risk of 

catastrophic forgetting. 

o This incremental approach improved stability compared to more aggressive 

approach used previously 

Challenges Identified: 

1. Validation Loss Fluctuations: 

o Temporary increases in validation loss during layer unfreezing indicate 

instability in generalization. 

o This might result from inappropriate learning rates or insufficient 

regularization when deeper layers were unfrozen. 

 

 

2. PR Curve AUC (70%): 



o Indicates the model struggles to differentiate between classes at certain 

thresholds, especially in edge cases. 

o False positives remain relatively high (23%), suggesting misclassification of 

irrelevant patents as relevant. 

Future Steps: 

1. Fine-Tune Learning Rates and Regularization: 

Apply additional regularization techniques such as data augmentation, dropout or weight decay 

for the backbone. 

2. Refine Layer Unfreezing Strategy: 

Explore unfreezing deeper layers in smaller and bigger increments e.g 5 and 1.5% to see how 

the Model performs. 

 

3. Use focal loss or similar techniques to emphasize harder-to-classify samples, reducing 

false positives and negatives. 

 

4. Regular Monitoring of Metrics: 

Use additional metrics (e.g., Matthews Correlation Coefficient) to better capture class-

wise performance nuances. 

 

Conclusion 

 

By refining the training strategy, including a gradual 2.5% layer-unfreezing approach and adaptive 

learning rate adjustments, the updated model demonstrated significant improvements in 

performance. A test accuracy of 7G% and an F1-score of 80% reflected better balance in 

predicting both irrelevant (Class 0) and relevant (Class 1) patents. 

However, the persistence of false positives (23%) and occasional fluctuations in validation loss 

highlight areas for further optimization. This iteration demonstrated that smaller, incremental unfreezing 

of layers, combined with an adaptive learning rate reducer, stabilized training and validation. 



 

Doc HN PT 05 

Basic Training Loop: 

• Model: PatentBERT 

• Loss Function: Cross-Entropy Loss 

• Optimizer: AdamW 

• Learning Rate: 

o Classifier and Pooler Layers: 0.001 

o Backbone Layers: Adaptive (between 0.0001 and 0.00001) using a custom LR 

reducer. 

• Early Stopping: Triggered based on validation loss. 

• Layers Trained: 

o Initially, only Classifier and Pooler Layers were trained. 

o Half of the encoder layers were unfrozen at epoch 6. 

• Batch Size: 8 

• Epochs Completed: 9 

 

 

 

Results: 

 

• Test Accuracy: 73% 

• Test F1-Score: 62% 

• Test Precision: 53% 

• Test Recall: 73% 

• PR Curve AUC: 33% 

 

Analysis: 

 

1. Confusion Matrix Observations: 

o Class 0 (Irrelevant Patents): 

▪ 100% correctly predicted (True Negatives). 

o Class 1 (Relevant Patents): 

▪ 0% correctly predicted (True Positives). 

o Misclassifications: 

▪ All patents classified as irrelevant, resulting in: 

▪ High recall for Class 0 due to consistent predictions of 

irrelevance. 

▪ No recall for Class 1, as no patents were identified as relevant. 



 

 

 

 

 

2. Behavior After Layer Unfreezing: 

o Starting at epoch 5, half of the encoder layers were unfrozen. 

o Observations: 

▪ Training and Validation Accuracy: 

▪ Dropped from 77% (train) and 72% (val) to 49% (train) and 48% 

(val) after unfreezing. 

▪ Training and Validation Loss: 

▪ Increased from 53% (val) at epoch 4 to 69% after unfreezing. 

▪ Training loss peaked at 76% and later settled at 71%. 

▪ Persistent instability was observed in both metrics after unfreezing the 

deeper layers. 

 

 

 

Custom Functions Used: 

 

1. Learning Rate Reducer (custom_lr_reducer): 

o Dynamically adjusted the learning rate for backbone layers when validation loss 

plateaued. 

o Slowed down the performance degradation but failed to fully stabilize the model. 

2. Unfreeze Half Encoder Layers (unfreeze_half_encoder_layers): 

o Unfroze the last half of the encoder layers without modifying other layers. 

o Introduced significant gradient instability due to the large number of layers unfrozen 

simultaneously. 

 

Challenges Identified: 

 

1. Gradient Instability: 

o Unfreezing half of the backbone layers at once caused a sharp drop in 

accuracy and an increase in loss. 

2. Class Imbalance in Predictions: 

o The model consistently predicted irrelevance (Class 0) for all patents, failing to 

generalize to Class 1. 

3. Validation Loss Plateau: 

o Despite using a custom learning rate reducer, validation loss remained elevated 

after unfreezing layers. 

 

Future Steps: 

 

1. Incremental Unfreezing of Layers: 

o Unfreeze smaller portions of the backbone 

2. Class-Weighted Loss Function: 



 

 

 

 

 

o Adjust the Cross-Entropy Loss with class weights to encourage better 

learning for Class 1. 

3. Data Augmentation: 

o Enhance the dataset with data augmentation to improve class imbalance and 

generalization. 

 

 

 

Conclusion: 

 

The strategy of unfreezing half of the encoder layers simultaneously proved too aggressive, leading to 

significant gradient instability and poor generalization for Class 1 (relevant patents). While the 

learning rate reducer slowed the performance decline, it was 

insufficient to address the challenges introduced by abrupt unfreezing. The model completely failed to 

identify relevant patents, with a PR Curve AUC of only 33%. Future iterations should adopt a gradual 

layer-unfreezing strategy, incorporate class-weighted loss functions, these adjustments should 

balance predictions across classes, improve 

generalization, and stabilize training. 

 

 

 

 

 

 

 

 

 

Observations so far 

Classifier-Only Training Limits Learning; Pooler Fine-Tuning is Essential 

 

Training only the classifier layer while keeping all the other layers of the BERT model frozen often 

results in suboptimal performance. This is because the learning capacity of the model is largely 

constrained when the deeper layers remain static. The frozen layers fail to adapt to the nuances of the 

new task, and the representations generated by the underlying transformer remain generic rather than 

task-specific. 

 

To achieve better task adaptation and performance, it is crucial to unfreeze and fine-tune at least some 

of the other layers, such as the pooler layer. The pooler layer, being responsible for aggregating the 

sequence output into a fixed-size representation, plays a critical role in determining how well the 

model can interpret and represent input data for the specific downstream task. Training the pooler 

layer alongside the classifier allows the 



model to adjust its high-level representations, thereby enhancing the overall learning process. 

It ensures that the model's deeper layers remain aligned with the specific requirements of the task while 

maintaining the generalization capability acquired during pre-training. 

 

 

Low Learning Rates Mitigate Overfitting with Larger Unfrozen Backbones 

 

While the classifier and pooler layers in a BERT model can benefit from a relatively high learning 

rate, such as 0.001, this approach becomes problematic when more layers in the model's backbone are 

unfrozen for training. The deeper layers of the transformer are highly sensitive to updates, and using a 

high learning rate, such as 0.001, can disrupt the pre- trained weights, leading to poor learning 

performance. This often manifests as low accuracies and high losses in both training and validation 

phases, as the model struggles to adapt effectively without destabilizing its pre-trained parameters. 

 

Conversely, when a low learning rate, such as 0.00001, is applied to a substantial portion of the 

unfrozen backbone, the training process demonstrates stable and consistent improvements. 

Training loss decreases steadily, and training accuracy increases, reflecting effective learning of the 

task. However, the validation metrics often tell a different story. After an initial phase of 

improvement, validation loss tends to rise, and validation accuracy drops, indicating overfitting. The 

model memorizes the training data but fails to generalize to unseen data, a common challenge when a 

large portion of the model's capacity is leveraged during training. 

 

This phenomenon underscores the importance of balancing the scope of fine-tuning with the 

appropriate learning rate. To prevent overfitting and ensure robust task-specific performance, it is often 

best to use a smaller learning rate alongside a selectively unfrozen backbone. By limiting the number of 

unfrozen layers, the model retains its generalization capabilities from pre-training while adapting 

sufficiently to the downstream task. 

 

 

 

 

 

Imbalanced Data Can Favor Minority Class Despite Weighted Sampling 

 

An imbalanced dataset, while often perceived as a challenge for classification tasks, does not always 

lead to poorer performance for the minority class. In some experiments, despite class 0 having nearly 

three times the number of samples as class 1, the model exhibited better performance on class 1. This 

finding challenges the assumption that class imbalance inherently disadvantages the minority class. 



 

 

 

 

 

Upon closer inspection, most misclassifications by both older and newer versions of the model 

occurred in class 0. This phenomenon could be attributed to the sheer number of patents in class 0, 

which statistically increases the likelihood of misclassification occurring within this class. However, 

it raises an interesting contradiction: with 2,881 patents in class 0 compared to just 1,004 patents in 

class 1, it would seem logical for the model to perform better for class 0, given the abundance of training 

data and the use of a weighted sampler to mitigate class imbalance. Yet, this is not always the case. 

 

One possible explanation lies in the distribution and complexity of features within each class. A 

larger class size can lead to higher intra-class variability, making it harder for the model to learn a 

consistent decision boundary. Meanwhile, the smaller class may inadvertently benefit from less 

variability, leading to more distinct and easily recognizable patterns during training. Additionally, the 

use of a weighted sampler could amplify the minority class’s re presentation during training, further 

boosting its performance. 

 

These observations highlight the nuanced dynamics of imbalanced datasets. Simply having more 

data for one class does not guarantee better performance for that class, and factors such as feature 

distribution, class variability, and sampling strategies play critical roles in shaping model outcomes. 

 

. 



 

Diving Deep into Encoder Layers 
 

 

In the architecture of transformer-based models like BERT, the encoder layers play a crucial role in 

how the model processes and transforms input data. Understanding the 

behavior of these layers, especially when fine-tuning them for specific tasks, can provide valuable 

insights into model performance and efficiency. 

 

Observations 

The model consists of 24 total encoder layers and each encoder layer is subdivided into 

16 layers which I have grouped into 3 main sections based on their position within the model: 

 

1. 10 Attention Layers: 

o 6 Self-Attention Layers: These layers are responsible for capturing 

relationships within the input sequence, allowing each token to attend to other 

tokens in the sequence. The self-attention mechanism enables the model to weigh 

the importance of various tokens relative to one another, which is key for 

contextual understanding. 

o 4 Output Layers: These layers help refine the output of the attention 

mechanism, transforming the attention outputs into representations that can be passed 

to the subsequent layers. 

2. 2 Intermediate Layers: These layers typically consist of dense layers that help in 

transforming the attention outputs into a higher-dimensional space, allowing the model to 

learn more complex representations. They play an important role in 

enhancing the expressiveness of the model. 

3. 4 Output Layers: These layers consist of two dense layers followed by two layer 

normalization layers. 

o Dense Layers: These are responsible for further processing the information and 

learning more complex relationships within the data. 

o Layer Norm Layers: These help stabilize training by normalizing the output 

across the layers, ensuring consistent behavior and mitigating issues such as 

exploding or vanishing gradients. 

 

 

 

Experiment Overview 

Focus: The goal of the experiment is to assess how the model's behavior and performance change 

when unfreezing and fine-tuning different parts of the encoder layers. 

Understanding the impact of this fine-tuning on both training efficiency and task 



 

 

 

 

 

performance will provide valuable information into the optimal strategies for improving model accuracy 

and generalization. 

 

Layer Segmentation: For the purposes of this experiment, the encoder layers are segmented into 

three distinct regions based on their proximity to the input and output: 

 

• Layers Closest to Input (0-7): These layers are responsible for initially processing the raw 

input data. They capture lower-level features and representations, such as token embeddings 

and basic syntactic structures. Unfreezing these layers allows the model to adapt the basic 

features of the input data to the task at hand. 

• Middle Layers (8-15): These layers capture more abstract and higher-level features, often 

reflecting deeper semantic relationships in the input sequence. Fine-tuning these layers can 

help the model focus on more complex task-specific patterns and improve its performance 

on downstream tasks. 

• Layers Closest to Output (16-23): These layers refine the final representations and are 

responsible for task-specific outputs. Fine-tuning these layers has a direct impact on the 

model’s performance on the target task. Unfreezing layers closer to the output typically 

allows the model to learn more detailed and task-specific features, but may risk overfitting if 

done excessively. 

 

Key Points for Investigation: 

 

1. Impact of Unfreezing Different Layer Groups: Investigating how unfreezing the layers 

closest to the input, middle, or output affects model performance can reveal which parts of the 

model need more fine-tuning for optimal task adaptation. 

2. Efficiency of Training: By selectively unfreezing parts of the model, we can observe whether 

focusing on particular encoder layers leads to faster convergence and improved 

generalization or whether overfitting occurs when too many layers are unfrozen. 

3. Transfer of Knowledge: Understanding how information flows through the layers and how 

different encoder sections contribute to model performance can provide deeper insights into 

the transfer of knowledge between pre-training and fine-tuning stages. 



Layers Closest to Input: Experiment Details 

Doc HN PT 05.3 

Basic Training Loop: 

 

Model: PatentBERT 

Loss Function: Cross-Entropy Loss 

Optimizer: AdamW 

 

Learning Rate: 

 

• Classifier and Pooler Layers: 0.001 

• Backbone Layers: Adaptive (0.0001–0.00001) using a custom LR reducer. 

 

• Batch Size: 8 

• Epochs Completed: 12 

• Early Stopping: Triggered based on validation loss. 

• Layer Training: 

o Initially, only the Classifier and Pooler layers were trainable. 

o At epoch 6, encoder layers 0–7 were unfrozen. 

 

 

 

Results 

 

• Test Accuracy: 82% 

• Test F1-Score: 82% 

• Test Precision: 83% 

• Test Recall: 82% 

• Test PR Curve AUC: 6G% 

• Matthew Correlation Coefficient (Test MCC): 56% 

Analysis 

1. Confusion Matrix Observations: 

 

• Class 0 (Irrelevant Patents): 

o 84% correctly predicted (True Negatives). 

• Class 1 (Relevant Patents): 

o 75% correctly predicted (True Positives). 

• Misclassifications: 

o Class 0 misclassified as Class 1: 25%. 



 

 

 

 

 

o Class 1 misclassified as Class 0: 16%. 

 

 

 

2. Behavior After Layer Unfreezing 

 

• At Epoch 6: Encoder layers 0–7 were unfrozen. 

• Observations: 

o Training Accuracy: Increased from 78% to 96% by epoch 12. 

o Validation Accuracy: Improved to 81% by epoch 8, dipped to 76% by epoch 10, 

and rose slightly to 79% by epoch 12. 

o Training Loss: Decreased from 46% to 0.09% by epoch 12. 

o Validation Loss: Fluctuated, decreasing from 49% to 45% in epoch 7, but 

peaked at 71% by epoch 12. 

 

 

 

Custom Functions and Techniques 

1. Learning Rate Reducer (custom_lr_reducer) 

 

• Dynamically adjusted learning rates for the backbone layers when validation loss 

plateaued. 

• Helped slow down performance degradation but didn’t completely eliminate 

validation loss fluctuations. 

 

2. set_bert_layers_trainable(model, start_layer=0, end_layer=7, requires_grad=True) 

 

• Used to set the required layers as trainable 

 

Key Observations 

 

1. Performance Trends: Unfreezing the input layers significantly improved training accuracy 

but led to overfitting, as indicated by rising validation loss. 

 

Future Improvements: 

 

o Use regularization more aggressively after unfreezing. 

 

Conclusion 

 

In this experiment, unfreezing the encoder layers closest to the input (layers 0-7) after six epochs 

improved training accuracy from 78% to 96%, but caused validation performance to fluctuate, 

with validation loss increasing from 45% to 71%, indicating potential 



 

 
 

 
Middle Layers: Experiment Details 

Doc HN PT 05.4 

Basic Training Loop: 

 

Model: PatentBERT 

Loss Function: Cross-Entropy Loss 

Optimizer: AdamW 

 
 
 
 

 

overfitting. The model achieved 82% accuracy, F1-score, precision, and recall, but struggled 

more with identifying relevant patents (75% accuracy) compared to irrelevant 

 

ones (84%). The custom learning rate reducer helped stabilize training but didn't fully resolve 

validation loss fluctuations. 

 

The trend to watch out for in this experiment are the differences in how the model converges or 

overfits via the losses and accuracy, how low/high can it go, at what point does it start to overfit? 

 

 

 

 

 

 

 

 

 

 

From the chart, the behavior of the model can be seen right after the top encoder layers are unfrozen from 

the 6th epoch, loss improves slightly at the 7th but leaving it unfrozen for more epochs causes the 

model to quickly start memorizing or overfitting. 



 

 

 

 

 

Learning Rate: 

 

• Classifier and Pooler Layers: 0.001 

• Backbone Layers: Adaptive (0.0001–0.00001) using a custom LR reducer. 

• Batch Size: 8 

 

• Epochs Completed: 10 

• Early Stopping: Triggered based on validation loss. 

• Layer Training: 

o Initially, only the Classifier and Pooler layers were trainable. 

o At epoch 6, encoder layers 8–15 were unfrozen. 

 

 

 

Results 

 

• Test Accuracy: 81% 

• Test F1-Score: 81% 

• Test Precision: 82% 

• Test Recall: 81% 

• Test PR Curve AUC: 66% 

• Matthew Correlation Coefficient (Test MCC): 54% 

Analysis 

1. Confusion Matrix Observations: 

 

• Class 0 (Irrelevant Patents): 

o 84% correctly predicted (True Negatives). 

• Class 1 (Relevant Patents): 

o 72% correctly predicted (True Positives). 

• Misclassifications: 

o Class 0 misclassified as Class 1: 28%. 

o Class 1 misclassified as Class 0: 16%. 

 

 

 

2. Behavior After Layer Unfreezing 

 

• At Epoch 6: Encoder layers 8–15 were unfrozen. 

• Observations: 

o Training Accuracy: Increased from 78% to 91.7% by epoch 10. 

o Validation Accuracy: Improved from 75% to 80% by epoch 9, dipped to 75% in 

epoch 10. 



o Training Loss: Decreased from 46% to 21% by epoch 10. 

o Validation Loss: Fluctuated, decreasing from 51% to 48% in epoch 8, but 

peaked at 55% by the 10th epoch. 

 

 

 

Custom Functions and Techniques 

 

1. Learning Rate Reducer (custom_lr_reducer) 

 

• Dynamically adjusted learning rates for the backbone layers when validation loss 

plateaued. 

• Helped slow down performance degradation but didn’t completely eliminate 

validation loss fluctuations. 

 

2. set_bert_layers_trainable(model, start_layer=8, end_layer=15, requires_grad=True) 

 

• Used to set the required layers as trainable 

 

Key Observations 

 

Performance Trends: Unfreezing the middle layers significantly improved training accuracy but 

led to overfitting, as indicated by rising validation loss. 

 

The model is slower to overfit 

 

Future Improvements: 

 

o Use less layers to see how it affects overfitting 

o Try freezing and unfreezing other layers in conjunction 

 

Conclusion: 



 

 

 

 

 

The difference between this chart and the former is slightly different, in this chart starting from the 6th 

epoch, the model is slower to converge, i.e the losses are slower to react and descend when the middle 

layers have been unfrozen, in similar fashion, it is also slower to overfit. From epoch 6-8 the general 

movement is downwards before it starts to overfit. The same could be said with the accuracies, it starts 

to slowly increase before reducing at the 9th epoch. These 2 charts could tell that the deeper layers are 

faster to converge and overfit in comparison to the layers close to the output. 

 

The experiment demonstrated that unfreezing encoder layers 8 –15 at epoch 6 significantly improved 

training accuracy (from 78% to 91.7%) but led to overfitting, as seen in fluctuating validation loss 

and a decline in validation accuracy by epoch 10. The test results, including an F1-score of 81% and 

MCC of 54%, indicate effective task performance but highlight challenges in distinguishing 

between classes, particularly for minority class instances. 

 

Custom techniques like dynamic learning rate adjustment helped stabilize performance but did not 

fully resolve overfitting. Future experiments should in which unfreezing fewer layers, varying layer 

ranges, and employing additional regularization techniques to achieve better generalization could be 

explored. 
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Basic Training Loop: 

 

Model: PatentBERT 

Loss Function: Cross-Entropy Loss 

Optimizer: AdamW 



 

 

 

 

 

 

 

Learning Rate: 

 

• Classifier and Pooler Layers: 0.001 

• Backbone Layers: Adaptive (0.0001–0.00001) using a custom LR reducer. 

• Batch Size: 8 

 

• Epochs Completed: 13 

• Early Stopping: Triggered based on validation loss. 

• Layer Training: 

o Initially, only the Classifier and Pooler layers were trainable. 

o At epoch 6, encoder layers 16–23 were unfrozen. 

 

 

 

Results 

 

• Test Accuracy: 80% 

• Test F1-Score: 81% 

• Test Precision: 82% 

• Test Recall: 80% 

• Test PR Curve AUC: 67% 

• Matthew Correlation Coefficient (Test MCC): 55% 

Analysis 

1. Confusion Matrix Observations: 

 

• Class 0 (Irrelevant Patents): 

o 81% correctly predicted (True Negatives). 

• Class 1 (Relevant Patents): 

o 78% correctly predicted (True Positives). 

• Misclassifications: 

o Class 0 misclassified as Class 1: 22%. 

o Class 1 misclassified as Class 0: 19%. 



 

 

 

 

 

2. Behavior After Layer Unfreezing 

 

• At Epoch 6: Encoder layers 8–15 were unfrozen. 

• Observations: 

o Training Accuracy: Increased from 79% to 83% by 8. Increased to 95.7% by 13th 

epoch. 

o Validation Accuracy: Improved from 78.4% to 83% by epoch 8, dipped to 

75.7% in epoch 12, Increased a bit to 79% by epoch 13. 

o Training Loss: Stayed around 45% from 6th to 7th epoch, Decreased steadily to 12% 

by 13th epoch. 

o Validation Loss: Stayed around 49% and 50% between 6th and 7th epoch, 

decreased to 43.5% by 8th epoch, Increased slowly to 57.8% by 11th epoch, rose to 

80% by epoch 12 and dropped to 72% at 13th epoch. 

 

 

 

Custom Functions and Techniques 

 

1. Learning Rate Reducer (custom_lr_reducer) 

 

• Dynamically adjusted learning rates for the backbone layers when validation loss 

plateaued. 

• Helped slow down performance degradation but didn’t completely eliminate 

validation loss fluctuations. 

 

2. set_bert_layers_trainable(model, start_layer=16, end_layer=23, requires_grad=True) 

 

• Used to set the required layers as trainable 

 

 

 

Key Observations 

 

• Model is much slower to overfit 

• Validation and training loss increase together and then decrease after unfreezing, showing 

similar trends before overfitting later. 

 

 

 

Future Improvements 

 

1. Selective Unfreezing: 

Experiment with unfreezing fewer layers closer to the output (e.g., layers 20–23) to reduce 

overfitting and validation loss fluctuations. 



 

 

 

 

 

2. Dynamic Fine-Tuning Strategies: 

Combine freezing and unfreezing across different epochs or apply progressive layer 

unfreezing to enhance generalization. 

 

 

 

Conclusion 

 

 

 

 

 

 

 

 

 

 

 

 

In this scenario, the model exhibits delayed overfitting following the unfreezing of layers, as reflected in 

the similar trends observed in training and validation loss between the 6th and 8th epochs. This 

alignment suggests stability in the learning process and an enhanced capacity for the model to 

generalize effectively as training loss decreases. The results indicate that unfreezing layers closer to 

the output introduces minimal disruption to the model's learned representations. When changes occur, 

they remain sufficiently controlled to enable generalization without leading to overfitting. 

 

 

 

 

 

Learned Hypothesis 

The behavior of the model when unfreezing different encoder layer groups highlights that the depth of 

unfreezing within the BERT architecture has a profound impact on the trade- off between 

convergence speed and generalization: 

 

1. Layers Closest to Input (0–7): Unfreezing these layers accelerates convergence in training 

but introduces a significant risk of overfitting. These layers encode fundamental input-level 

features, and changes here can drastically alter the model's learned representations, leading 

to instability in validation performance and poor generalization. 



 

 

 

 

 

2. Middle Layers (8–15): These layers represent the core of the model's feature extraction 

capability. Unfreezing them slows down both convergence and overfitting, enabling more 

controlled learning. However, this segment still exhibits a risk of overfitting after extended 

training, although it is slower compared to the input layers. 

3. Layers Closest to Output (16–23): Unfreezing these layers causes the least disruption to 

the model's representations, resulting in a slower overfitting process and better stability in 

training and validation trends. These layers handle task- specific transformations, and 

changes here primarily refine the model's outputs without drastically altering its overall 

feature space. 

 

General Hypothesis: 

Unfreezing deeper layers closer to the input causes greater sensitivity to overfitting, as these layers 

govern foundational feature extraction. Conversely, unfreezing layers closer to the output has a 

minimal destabilizing effect and allows for controlled fine-tuning, making it a safer strategy for 

achieving generalization without compromising stability. Middle layers offer a balance but require 

careful monitoring to prevent overfitting during extended training. 

 

This pattern suggests that selective and progressive unfreezing, combined with adaptive learning rates, 

can optimize the trade-off between generalization and overfitting across different encoder layer 

groups. 

 

 

 

 

 

 

 

 

 

Experiment 5.5.2: Unfreezing Encoder Layers 18–20 

Overview 

This experiment was part of a series evaluating fine-tuning BERT layers incrementally. For 

Experiment 5.5.2, the focus was on unfreezing encoder layers 18–20 at the 6th epoch while keeping 

other layers frozen, to observe the effects on task-specific performance and training stability. This 

approach aimed to strike a balance between introducing representational flexibility and minimizing 

destabilization. 



Selection Rationale: 

 
Experiment 5.5.2 was chosen as the representative configuration because it produced some of the 

best results in terms of accuracy, F1-score, and MCC. Similar experiments with other layer ranges, 

such as 16–18 (Experiment 5.5.1) and 21–23 (Experiment 5.5.3), were conducted but did not 

achieve comparable stability or performance metrics. 

 

Results Summary 

 

• Test Metrics: 

o Accuracy: 83% 

o F1-Score: 83% 

o Precision: 84% 

o Recall: 83% 

o MCC (Matthew’s Correlation Coefficient): 58% 

o PR Curve AUC: 67% 

o ROC Curve AUC: 87% 

• Confusion Matrix Analysis: 

o Class 0 (Irrelevant Patents): 

▪ Correctly identified: 86% (True Negatives) 

▪ Misclassified: 14% 

o Class 1 (Relevant Patents): 

▪ Correctly identified: 75% (True Positives) 

▪ Misclassified: 25% 

 

Training and Validation Behavior 

 

1. Training Accuracy: 

o Gradually increased, reaching G2% by the 12th epoch. 

o The steady improvement indicates a controlled learning process without abrupt 

overfitting tendencies. 

2. Validation Accuracy: 

o Rose to a peak of 82.4% at the 7th epoch. 

o Declined to 77.8% by the 10th epoch, rebounded to 83% at the 11th, and then 

dropped sharply to 77.7% at the 12th epoch. 

o This pattern reflects minor instability after prolonged training but suggests 

the model’s ability to recover generalization temporarily. 

3. Training Loss: 

o Consistently decreased to 21% by the last epoch, signifying effective 

optimization. 

4. Validation Loss: 

o Decreased from 51% to 41% by the 7th epoch, showing improved 

generalization during early fine-tuning. 



 

 

 

 

 

o Increased gradually to 46% at the 11th epoch and spiked to 60.8% at the 12th 

epoch, signaling overfitting as the model memorized patterns rather than 

generalizing. 

 

Key Observations: 

 

o Unfreezing layers 18–20 allowed fine-tuning of task-specific output layers while 

maintaining the stability of foundational representations. 

o The resulting performance metrics (Accuracy: 83%, F1-Score: 83%, MCC: 58) 

indicate strong generalization compared to experiments involving broader 

unfreezing ranges, where overfitting occurred more rapidly. 

o The validation trends suggest that unfreezing only a subset of output- adjacent 

layers (18–20) led to a more stable training process compared to larger ranges 

(e.g., 16–23). 

o However, slight overfitting appeared after the 11th epoch, evidenced by increased 

validation loss and declining validation accuracy. 

o Class 0 (irrelevant patents) showed higher recognition rates (86%) compared to Class 

1 (75%). This indicates a class imbalance in model sensitivity, where the model is 

more confident in identifying irrelevant patents. 

o The ROC Curve AUC of 87% suggests that the model is effective at distinguishing 

between the two classes, with relatively high recall (83%) and precision (84%). 

o The gradual changes in accuracy and loss curves highlight the controlled impact 

of unfreezing layers 18–20. Compared to experiments with larger unfreezing 

ranges, this configuration proved less prone to destabilizing the model’s learned 

representations. 

 

Conclusion 
 

 

 

 

 

 

Experiment 5.5.2 was chosen as the most effective configuration from a series of experiments with 

different layer ranges. Unfreezing encoder layers 18–20 struck a good balance between the model's 

ability to adapt its internal representations to the task and its 



 

 

 

 

 

capacity to maintain consistent performance on unseen data.. This setup produced one of the highest-

performing models, achieving an accuracy of 83%, F1-Score of 83%, and MCC of 58%. The 

controlled training dynamics and improved stability make this configuration a promising approach 

for fine-tuning tasks requiring minimal overfitting and high precision. 

 

 

 

 

 

 

 

Gradient Boost Ensemble Model Experiment 

Model : XGBoost 

 

Description : Trained on inputs which are the probabilities of the training data for the Old 

Model and a new PatentBert Model (notebook) 

 

Results Summary 

 

• Test Metrics: 

o Accuracy: 82% 

o F1-Score: 70% 

o Precision: 64% 

o Recall: 77% 

o MCC (Matthew’s Correlation Coefficient): 58% 

o PR Curve AUC: 71% 

o ROC Curve AUC: 87% 

• Confusion Matrix Analysis: 

o Class 0 (Irrelevant Patents): 

▪ Correctly identified: 84% (True Negatives) 

▪ Misclassified: 14% 

o Class 1 (Relevant Patents): 

▪ Correctly identified: 77% (True Positives) 

▪ Misclassified: 25% 

 

Key Observations 

 

1. Performance Metrics: 

o The Accuracy of the ensemble model (82%) indicates strong overall 

classification performance. 

o ROC Curve AUC (87%) and PR Curve AUC (71%) highlight good 

discrimination ability and performance in handling imbalanced data. 

https://adb-7657335775720888.8.azuredatabricks.net/editor/notebooks/2760558893525646?o=7657335775720888&command/2760558893525647


 

 

 

 

 

o Despite the high accuracy, the F1-Score (70%) reflects room for improvement 

in balancing precision and recall, particularly for relevant patents. 

2. Class-Specific Insights: 

o Class 0 (Irrelevant Patents): 

▪ Achieved high True Negative Rate (84%), demonstrating the ensemble 

model's ability to filter out irrelevant patents effectively. 

▪ Relatively low misclassification rate (14%) for this class. 

o Class 1 (Relevant Patents): 

▪ While the True Positive Rate (77%) shows the model's ability to 

correctly identify relevant patents, the Precision (64%) indicates 

challenges in avoiding false positives. 

▪ The higher misclassification rate (25%) for this class suggests potential 

improvements in recognizing subtle patterns for relevant patents. 

3. Ensemble Effectiveness: 

o Combining the Old Model and the PatentBERT model through XGBoost led to a 

notable improvement in metrics such as ROC Curve AUC (87%). 

o The integration effectively leveraged the strengths of both models, achieving better 

generalization and robustness compared to individual model performance. 

 

Conclusion 

 

The Gradient Boost Ensemble model successfully combined the outputs of the Old Model 

and the new PatentBERT model, achieving strong overall classification performance, 

particularly in distinguishing irrelevant patents. However, while the model demonstrated 

excellent discrimination capability (as indicated by ROC AUC), challenges remain in 

improving precision and reducing misclassification for relevant patents. 



 

 

 

 

 

 

 

Model Training Validation Exp. 

Link Recall% Precision% Accuracy% Recall% Precision% Accuracy% MCC

% 

Baseline 

model 

(Old) 

88 92 88 78 84 78  Link 

PatentBert 

(HN 

PT 

05.3.2) 

96.525 96.54 96.525 81 84 81 57 Link 

BatteryBert 

 

(HN 

BT 

05.3.2) 

90.6 90.7 90.6 80 82 80 53 Link 

Patent 

Bert- 

Weighted 

loss 1/2 

83 83.7 83 81 83 81 57 Link 

Battery 

Bert 

Weighted 

loss 1/2 

69 72 69.67 78 76 78 38 Link 

Ensemble 99.7 86.2 95.7 77 64 82 58 Link 

 

Key Takeaways: 

PatentBERT with the weighted loss shows a balance between recall, precision, and MCC, making it 

a robust choice for scenarios where generalization is critical. 

 

BatteryBERT models underperform compared to their PatentBERT counterparts, both with and 

without weighted loss. 

 

The ensemble model, while strong in training, sacrifices validation precision, indicating potential 

overfitting or misalignment in integrating predictions from the base models. 

https://adb-7657335775720888.8.azuredatabricks.net/ml/experiments/4276916842777935?o=7657335775720888
https://adb-7657335775720888.8.azuredatabricks.net/ml/experiments/523021671151505/runs/d2c239d7bbd443ee88dc8883004db636/model-metrics?o=7657335775720888
https://adb-7657335775720888.8.azuredatabricks.net/ml/experiments/523021671151505/runs/0ab229a2377e49378c107298eea057e8/model-metrics?o=7657335775720888
https://adb-7657335775720888.8.azuredatabricks.net/ml/experiments/523021671151505/runs/a4688d7df5f44230984c2df03b550769/model-metrics?o=7657335775720888
https://adb-7657335775720888.8.azuredatabricks.net/ml/experiments/523021671151505/runs/a4688d7df5f44230984c2df03b550769/model-metrics?o=7657335775720888
https://adb-7657335775720888.8.azuredatabricks.net/ml/experiments/523021671151505/runs/0449fdc81b664088a679a0f619517e5e?o=7657335775720888


 


